
Calculating Timeouts for Minimum Cost RPC 

Peter B. Danzig 

Computer Science Division 
University of California, Berkeley 

Berkeley, California 94 720 

Abstract. We derive expressions for remote pro-

cedure call (RPC) retransmission timeout values that 

minimize the weighted sum of total elapsed time, operat-

ing system kernel costs, and network charges. Currently 

we select RPC retransmission timeouts to minimize net-

work utilization, an operating point chosen with our net-

works' low bandwidth in mind. When public utilities pro-

vided digital service becomes popular, we will routinely 

make requests to servers across town and across nation 

and we will pay for each message that we send. These 

networks may offer various grades of service, each with 

different loss and delay characteristics. In such an 

environment, choosing the retransmission timeout and 

grade of service that minimize our costs is not obvious. 

Our approach, illustrated with a simple RPC algorithm, 

can be applied to other remote invocation mechanisms. 

We can incorporate the expression for the optimal 

retransmission timeout that our approach generates into 

the communication's software of distributed operating 

systems. 
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1. Introduction 

Consider a remote procedure call (RPC) between a 

requestor site and a server site [1]. Since both the net

work and the server may lose messages, sometimes the 

requestor must retransmit its RPC request one or more 

times. Similarly, since both the network and the requestor 

may lose messages, sometimes the server must retransmit 

its reply one or more times. Since the server's service 

time varies depending on the its load and processor speed, 

most existing RPC implementations retransmit infre-

quently, assuming that the network rarely loses messages 

and that the server will eventually respond. However, in 

some networks, the probability of message loss can be 

high. Extended local area networks (LAN) experience 

buffer overflow at LAN bridges. Internet gateways drop 

packets due to congestion by caused by stream protocols. 

Aloha and slotted Aloha networks lack collision detection 

and lose messages with high probability. The probability 

of message loss increases with message size, and many 

request-response protocols can send many kilobytes of 

data, e.g. encryption key servers, authentication servers, 

and and network paging servers. Modeling existing net-

works, we introduce an RPC cost function that accounts 
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for kernel costs, network costs, and end-to-end message 

transmission delay, and minimize it as a function of the 

protocol retransmission timeout. 

When public utility provided networks become 

popular, we can expect to pay for each message we 

transmit. Perhaps the networks will offer various grades 

of message reliability and message transmission delay. 

Unreliable messages cost less than highly reliable mes-

sages. Slower messages cost less than faster messages. 

Modeling these future networks, we minimize our RPC 

cost function by simultaneously finding the optimal 

retransmission timeout and grade of service to request 

In Figure 1 we illustrate our RPC retransmission 

policy. The requestor retransmits its RPC every t mil-

liseconds until it receives the server's reply. We denote 

the probability that a message is lost by p , the probability 

that it is delivered by q = 1 - p, the operating system 

kernel's cost per message by Kr ~d the network's charge 

per message by Mr(Y ,p), where y denotes the message's 

expected transmission delay. We denote the time 

between retransmissions, the retransmission timeout, by t, 

the server's service time density by f(t), and the 

expected service time by x. 

1.1. RPC cost function 

We define the total RPC cost L as the weighted 

sum of the elapsed time between the requestor's initial 

transmission and its first reception of the RPC's results, 

the cost imposed on the operating system kernels by mes-

sages sent by both the requestor and the server, and the 
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Figure 1. Figure 1. Behavior of the RPC algorithm we 

consider here. 

charge that the network imposes for the transmitted mes-

sages. Denote the expected number of message sent by 

n, the expected elapsed time by T, and the expected RPC 

cost function by L . 

L=a ·T+b ·nKr+c ·n·Mr(y,p). (1) 

Notice that the weighting constants a, b , and c must 

translate each component of this sum into some common 

unit of cost, say milliseconds. Since we can rescale Kr 

and M r ( y , p ) , without loss of generality, we set a , b and 



c to 1. 

1.2. Outline 

In Section 2 we calculate optimal timeouts for 

existing networks in three steps. We first calculate the 

optimal timeout assuming that message transmission 

delay is negligible and result messages are not lost. This 

models busy servers. Busy servers may repeatedly drop 

requests, but once it receives one, it never drops its 

response. Next we extend the model to include lost result 

messages. Finally, we add network transmission delay y . 

In Section 3 we consider networks with tunable loss and 

delay parameters, where slow messages cost less than fast 

messages and less reliable messages cost less than more 

reliable messages. We simultaneously minimize the RPC 

cost function L over the retransmission timeout t and the 

optimal network transmission time y and loss parameter 

p to request In Section 4 we discuss how to incorporate 

our results in distributed systems. We draw conclusions 

in Section 5. 

2. Optimal retransmission timeout 

In this section we derive the optimal retransmission 

timeout 'topt by evaluating the cost function and setting its 

derivative with respect to the retransmission time t to 

zero, given that the network does not charge for messages 

sent (Mr(Y ,p) = 0). 

2.1. No lost replies. No message transmission time. 

Momentarily assume that the RPC's result message 

is never lost Each transmission sent and lost before the 
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server receives the RPC request contributes kernel cost 

Kr and time 't to the cost function L. Since the requestor 

continues retransmitting the RPC request every 't seconds 

until it receives the results, it retransmits L t /tj times dur-

ing the service time interval t . The initial request and the 

one (and only) reply contribute 2 Kr. 

L = .r. pic q ( Kr + 't) k + 2 Kr + j f (t )[t+l.!...J Krl dt . 
/c~ 0 't 

Recall the expected value of a geometric series. 

~ k k-1 1 4-Jq p =-. 
/c=l q 

We integrate and replace the first part of the integrand 

with the expected service time x. We replace the 

geometric series with its value pI q , and rewrite the floor 

as a summation. 

- (j+l )'t 

L=f!_(Kr+t)+x+2Kr+KrL f jf(t)dt. 
q j=l j't 

We minimize the total cost L by setting its derivative with 

respect to 't to zero. 

dL d - (j+l )'t 

- = f!_ + - Kr L J } f (I) dt = 0. 
dt q dt j=l j't 

We apply the chain rule and discover that derivative of 

the summation telescopes. 

d - (j+l)'t 

dt Kr ~~ ~ } f (l) dt = - Kr ~~ j f (} 't ) . 

When the RPC service time is distributed exponentially, 

then this is a geometric series and is easily evaluated. 

- 1 - -'tix 
1:Jf(jt)=-=1:Je-f'tlx= ___ e ___ _ 
J=l X J=l X (1-e -'t 1

")2 

The optimum timeout satisfies a quadratic equation in 

-'tix e . 



p_ _ Kr _....;e;;__-_-c 1_:; __ 
- =0. 

q x (1-e --c 1")2 

We find the roots of this quadratic equation by employing 

the quadratic formula. 

e _,, = [; :~ + '] ±{ [; :~ + r-r 
Since the optimal timeout must be positive, we employ 

the smaller root. 

Unfortunately, our precision has left us with a clumsy, 

albeit exact, expression. As we are seeking something 

that system programmers can exploit, we approximate L 

by ignoring the floor within the integral. This 

approximation's accuracy decreases as 't grows larger 

thanx. 

J!.. Kr 
L = ( Kr + 1: ) + 2 Kr + x (1 + - ). 

q 't 

We set the derivative of this expression to zero or, alter-

natively, apply the approximation In (1-x) ~-x to the 

equation for 'topr above, and obtain 

_/ Kr x 
'topr :: q -\1 pq 

This timeout is only accurate on local networks 

where the transmission time is negligible and where RPC 

requests are lost primarily because the RPC server is 

overloaded. In the remainder of this section we include 

lost responses and network transmission time to the 

model. Most of the hard work is over. 

2.2. No network transmission time 

We now modify our cost function to account for 

lost replies. Ignore message transmission time for a 

moment longer. 

L = ! ( K, +< ) + 2 K, + q l f (I) [ t + l ~ j K, l dt 

+p 1 f (t) l ~ j [ <+ K, J dt. 

-
+p L j ((1 + q) Kr + 't) (1- qzy-t qz 

j=l 

The server's result transmission is delivered with proba-

bility q and is lost with probability p . The first integral 

accounts for latency and retransmission costs when the 

result is delivered successfully. The second integral 

accounts for latency and retransmission costs through the 

instant when the result transmission is lost, in which case 

the latency is a multiple of 't. The geometric series in q2 

accounts for the kernel costs and latency that accrue after 

the result transmission is lost until both a retransmission 

and the reply to the retransmission are successfully 

delivered. The factor of (1 + q) corresponds to the 

expected number of transmissions for each retransmission 

cycle. With probability 1 the requestor retransmits. With 

probability q the retransmission reaches the server and the 

server replies. (We assume the server holds the results of 

the RPC for a long time; clearly, some form of garbage 

collection can eliminate old results). We collapse the 

geometric series and replace the floor with a summation. 
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L = p_ (K, +t)+2K, +p ((l+q)K, +t)q-2 

q 

.. U+l)'t 

+ q X+ ( K, + p 't) L J j f (t) dt . 
j=l j 't 

We minimize this quantity by setting its derivative to 

zero. 

.. U+l)'t 

+ P 1: J j ! <t) dt = o. 
}=1 j 't 

When f(t) is exponential, we easily find the cost 

functionL. 

L = p_ (K, +t)+2K, +p ((l+q)K, +'t)q-2 

q 

-'tlz 

+ q x + ( K, + p 't) e ,-. 
1 -'t ;x -e 

However, this expression is not in quadratic form and we 

can not find 'topt in closed form. Although we could 

apply the Newton-Raphson technique to approximate this 

expression's root, we choose instead to approximate 'topt 

by ignoring the floor. 

L ::: p ( K, + 't) + x + 2 K, + p ( (1 + q) K, + t ) q-2 

q 

+ K, x -r-1 • 

We set its derivative to zero and solve for 'topt 

Let us investigate our approximation's sensitivity to 

the service time distribution. In Figure 2 we plot the cost 

function L and our approximation of 'topt· We plot the 
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cost function L for uniform, exponential, and constant 

service time distributions of equal expected service time 

x. We see that our approximation of 'topt is very close 

indeed. 

2.3. Message transmission time 

We are now ready to account for message transmis-

sion time by adding to each message its expected message 

transmission time y. We proceed in the familiar manner 

to derive the optimal timeout 'topt that we seek. 

10 20 30 40 50 60 70 80 90 100 
Retransmission Timeout 

Figure 2. Figure 2. Cost function versus timeout 

x = 15, K, = 5, q = .8, y=(O and 10). 



L = /!.1_ + q (2y +X) 
q 

+ P [ < l I (t) l-7-j dt + 2y + ;,] 

+ K, [ ~ + (I + q) I I (t) l2\ + t j dt 

+2-q Il(t) l ~ j dt + p <~;q>] 

When the server's service time is exponentially distri-

buted, we can evaluate the cost function. However, as 

this does not lead to a closed form expression for 'topt , we 

immediately derive an approximation for L by ignoring 

the floors. 

L == Pq't +q (2y +x)+p [ y +x+2y + ; 2 ] (2) 

K [ 
p_ (1 + q) 2 y 2 x p (1 + q) l 

+r + ++ + 2 
q 't 't q 

We set the derivative with respect to 't to zero, replace p 

by 1 - q, and solve for the optimum timeout 't. 

't = - J Kr ((I + q) 2 Y + i) (3) 
OP.I q -\1 (1 _ q2) • 

In Figures 4 and 5 we plot the cost function and its 

standard deviation for several sets of parameters. Note 

that the standard deviation grows quickly when the 

timeout exceeds 'topt and that our approximation for 'topt 

holds for both constant and exponential message 

transmission delay. 
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Figure 3. Figure 3. Cost function versus timeout. 
x = 15, Kr = 5, q= .5, y = 10 andy = 100, service ex
ponential, transmission time constant. 
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Figure 4. Figure 4. Mean and standard deviation of cost 
function versus timeout. x = 15, Kr = 5, q = .8, y = 10, 
service exponential, transmission time constant and ex
ponential. 

3. Paying for faster messages 



Since public utility provided digital communication 

will eventually become popular, let us investigate how 

one possible feature of future networks, being able to pay 

for reduced transmission delay and lower error rates, 

affects our timeout calculations. Suppose the network 

charges us for each message we send, charging more for 

decreased transmission time and lower loss rates. We, as 

network subscribers, specify the type of service we 

desire, and pay a service charge based on the network 

resources we consume [2]. For example, we can specify 

lossy service and pay less per message, but have to 

retransmit more. For our purposes, assume we can specify 

the message transmission delay y, y ~ y 0 , and loss proba-

bility p , p ~ p 0, and pay a charge M r ( y , p) ~ 0, decreas-

ing in both y and p, for each message we send (y 0 is the 

minimum network delay and p 0 is the minimum message 

loss probability). We find the optimal retransmission time 

and service grade ('topt•Yopt,Popt) subject to the con-

straints 't > 0, y ~ y0 , and p ~Po that minimize our RPC 

cost function. 

Recall the definition of the RPC cost function, 

equation (1). Assume again that the scaling factors a, b, 

and c have already been included in M r ( y , p) and Kr. 

We approximate the RPC cost function by combining 

equations (1) and (2). 

L = pq< +q (2y +Z)+p [ y +i"+2y + ;,] 

(K M ( )) 
[ 

o + q) 2 y +x 2 P (1 + 2 q) J 
+ r + r y,p + + 2 

't q 
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We employ the Kuhn-Tucker method [3] of constrained 

optimization to minimize L. The Kuhn-Tucker method 

optimizes L by setting its partial derivatives to zero while 

maintaining all of the constraints. We make this example 

concrete by considering a possible message cost 

Mr ( y, p) and constraint gP. 

Mr(y,p)=!!:_ 
y 

gP =p -po=O. 

g., =y -yo~O. 

We introduce Lagrange multiplier A., corresponding to 

constraint equation g.,. The Kuhn-Tucker conditions 

reduce to 

j_L =0 
ere 

;y [ L - A., g.,] = 0 

't ~ 0, and y ~ 0 . 

This constrained optimization problem is easily 

solved since p is given and the constraint on y is linear. 

We discover that the optimal pair ('Copt, Yopt) is simply the 

solution to the unconstrained problem unless Yopt < y 0 , in 

which case the optimal transmission time y is y0 and the 

optimal retransmission timeout is 'Copt as calculated in (3) 

after substituting M r (y O• p) + Kr for K r and Yopt for y . 

't :: - / (Kr +Mr<Yo.P)) ((1 +q) 2yo+X) 
opt q \1 (1 _ qz) · 

In Figure 5 we plot several optimal timeout and 

optimal transmission delays as a function of the constant 

. i 



of proportionality a. When M r ( y, p) is differentiable and 

decreasing in y and p, we can always apply the Kuhn-

Tucker algorithm to find the channel parameters Yopt and 

Popr and retransmission time 'topr that minimize L. Com-

pare the two darkest pairs of lines which only differ by 

the kernel cost Kr. The darkest line has larger Kr. We 

see that this pushes the retransmission time higher but lets 

us pay for faster channel delay. 

4. Implementation 

We can take advantage of these timeout calcula-

tions in real distributed systems by incorporating them 

into network code. We can cache estimates of the 

expected service time x, the loss parameter p, and the 

round trip message delay 2 y to various destinations. We 

100 
Optimal timeout 'top< and transmission time Yopt 

90 
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70 

60 

50 
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30 
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Figure 5. Figure 5. Retransmission timeout 'tap~ and 

transmission delay Yopr are functions of the transmission 

delay cost function M, ( y , p ) = aJy . 

can update a destination's estimates every time we com-

plete an RPC. Where no estimates exist, we can initialize 

them to some set of default values. Estimates for sites 

with which we communicate frequently, nameservers, 

authentication servers, page servers, will improve and 

converge. 

It is more difficult to exploit Section 3 's results, 

finding both the network's optimal grade of service and 

the optimal timeout, because we lack closed form approx-

imations. However, we can calculate these values by 

solving the Kuhn-Tucker equations once and place them 

in the application software or operating system. Given a 

specific network cost function M r ( y, p ), we could con-

struct a table of the optimal t, y , and p indexed by the 

remaining variables x and Kr. 

4.1. Stability 

Address stability issue. Since losses may occur 

from buffer overflow, raising the timeout, not lowering it, 

is the measure that leads to stable behaviour. However, 

as congestion and losses increase, the server's estimation 

of x increases as well. If the server's queue holds four 

jobs, then its estimate of x increases to 5xbar0, where x0 

denotes the empty queue behaviour. 

When more than one service provider exists, a 

related problem is choosing the timeout at which we give 

up on one service provider and go on to the next. For 

example, the 4.3 bsd UNIX nameserver accepts the 

names of three alternative servers which it tries in round-

robbin order. We can apply our technique to calculate this 
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timeout 

5. Conclusions 

Selecting protocol timeout values taxes the intuition 

of system programmers. Historically RPC timeout values 

have been chosen long to minimally impact the network 

load and because the programmers assumed that losses 

were rare. At the minimum, our expression for the 

optimal retransmission timeout (3) sheds light on the 

intuitive process of selecting timeouts. We believe our 

expression replaces the black art of selecting timeouts. In 

the future, when we have to select and pay for the grade 

of network service that we use, we will have to select 

both the RPC retransmission time and the network 

transmission delay and error rate that we request. We 

solved this problem by adding the cost per message 

M r ( y, p) sent into the RPC cost function L and then 

minimized L over the parameters that we are allowed to 

select, the retransmission time t, the network transmission 

delay y, and the network's message loss probability p. 

We believe our RPC cost function reflects the 

tradeoffs that protocol designers make. However, the 

optimal retransmission timeout that we calculate (3) is 

only as good, of course, as the parameters that drive it, the 

kernel cost per message K r, the expected service time x, 

the probability a message is lost p , and the round trip 

message delay 2 y . 

__ / Kr ((1 +q)2y +X) 
topt - q -'J (1 _ qz) 
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One can extend our skeletal RPC algorithm to other 

request-reply protocols. We can apply our techniques to 

optimize the Birrel and Nelson algorithm [1] in which the 

server acknowledges all retransmissions. Inherently, we 

have assumed that RPCs are not the cause of network 

congestion and that message loss is independent and 

describable by a single parameter p . Since our algorithm 

decreases t with increasing loss probability p , we add to 

network congestion. This is reasonable since stream pro

tocols are the principle cause of network congestion, and, 

in the future, charging for messages will reduce the 

greedy stream protocol's incentive. 
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